If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x-10)+(3x^2-12)=180
We move all terms to the left:
(5x-10)+(3x^2-12)-(180)=0
We get rid of parentheses
3x^2+5x-10-12-180=0
We add all the numbers together, and all the variables
3x^2+5x-202=0
a = 3; b = 5; c = -202;
Δ = b2-4ac
Δ = 52-4·3·(-202)
Δ = 2449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{2449}}{2*3}=\frac{-5-\sqrt{2449}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{2449}}{2*3}=\frac{-5+\sqrt{2449}}{6} $
| 9(a+7)+8=2 | | −9s−8+5s=−10. | | 16=-4t-4 | | 2w+8=8 | | 12(x+3)-20=64 | | 11s=9 | | 1/4x-7=1+3x | | 9=11s | | 11(k-11)=1 | | 4x+1=7x-20 | | -x-6(-2x+1)=-6 | | 6(2x-3)-10=32 | | (3x+2.5)=(4x-35) | | 58h+112=5 | | -10y–3=7 | | -5n=65 | | -38=-13-5y | | 11q-4q+5q-11q=19 | | 6(a-10)=3+5 | | 6(3q-4)=4(4q+7) | | 16=8^x-4 | | 3h-2h-1h+1h=15 | | 18=x/5=12 | | 8x-3x+3=13 | | (16x-3)/10=9x-(10x+7)/3 | | 2j+3j=20 | | (16x-3)/10=9x-10x+7 | | 9=-7x+3(x-5) | | 2d-2d+1d+4d-2d=15 | | 19d-12d-4d+3d-5d=18 | | 8+r/9=1 | | 17z+13z-9z-20z=13 |